If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+39x-840=0
a = 1; b = 39; c = -840;
Δ = b2-4ac
Δ = 392-4·1·(-840)
Δ = 4881
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-\sqrt{4881}}{2*1}=\frac{-39-\sqrt{4881}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+\sqrt{4881}}{2*1}=\frac{-39+\sqrt{4881}}{2} $
| 25=19+x/2 | | 2x+2.4=8.4 | | 8+7y=13 | | 3-c=11 | | 2y-29=19 | | 4x-12=8 | | 5x+6=-3+3x+13 | | 1/2(x−30)=24+7x | | x/4-19=-7 | | 5x-5.26=-4.71 | | 8.1+5.82z=20.12z-6.2 | | 1/2(x-30)=24+7x | | 7p+5=17 | | 4(x+2)+5x=14 | | 19+1.50x=8+2.75x | | 7x+3=7(x+4) | | 2-6x=7-2x-(4/2(4+4^2)+4x) | | 10(v+1)-2v=2(4v+1)-7 | | 9+u=5 | | -21z-0.8=-31z+2.7 | | v-5/7=72/3 | | -28z-0.4=-38z+1.3 | | 20+5=-5(7x-5) | | 5w+14=59 | | 3(2x+7)=-41+50 | | 5x+22x=30 | | 3w-8=43 | | 38.4-8c=22.4 | | 24=4.x | | 2=0.4x-0.6x-4 | | -17=-5+2u | | 5x-3+17+13x+4=360 |